A Probabilistic Short-Term Water Demand Forecasting Model Based on the Markov Chain
نویسندگان
چکیده
This paper proposes a short-term water demand forecasting method based on the use of the Markov chain. This method provides estimates of future demands by calculating probabilities that the future demand value will fall within pre-assigned intervals covering the expected total variability. More specifically, two models based on homogeneous and non-homogeneous Markov chains were developed and presented. These models, together with two benchmark models (based on artificial neural network and naïve methods), were applied to three real-life case studies for the purpose of forecasting the respective water demands from 1 to 24 h ahead. The results obtained show that the model based on a homogeneous Markov chain provides more accurate short-term forecasts than the one based on a non-homogeneous Markov chain, which is in line with the artificial neural network model. Both Markov chain models enable probabilistic information regarding the stochastic demand forecast to be easily obtained.
منابع مشابه
Development of Markov Chain Grey Regression Model to Forecast the Annual Natural Gas Consumption
Accurate forecasting of annual gas consumption of the country plays an important role in energy supply strategies and policy making in this area. Markov chain grey regression model is considered to be a superior model for analyzing and forecasting annual gas consumption. This model Markov is a combination of the Markov chain and grey regression models. According to this model, the residual er...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملA Fuzzy Probability-based Markov Chain Model for Electric Power Demand Forecasting of Beijing, China
In this study, a fuzzy probability-based Markov chain model is developed for forecasting regional long-term electric power demand. The model can deal with the uncertainties in electric power system and reflect the vague and ambiguous during the process of power load forecasting through allowing uncertainties expressed as fuzzy parameters and discrete intervals. The developed model is applied to...
متن کاملCOMPARISON ABILITY OF GA AND DP METHODS FOR OPTIMIZATION OF RELEASED WATER FROM RESERVOIR DAM BASED ON PRODUCED DIFFERENT SCENARIOS BY MARKOV CHAIN METHOD
Planning for supply water demands (drinkable and irrigation water demands) is a necessary problem. For this purpose, three subjects must be considered (optimization of water supply systems such as volume of reservoir dams, optimization of released water from reservoir and prediction of next droughts). For optimization of volume of reservoir dams, yield model is applied. Reliability of yield mod...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کامل